Wednesday, February 17, 2010
General technical explanation
General technical explanation
A vapor compression cycle is used in most household refrigerators, refrigerator–freezers and freezers. In this cycle, a circulating refrigerant such as R134a enters a compressor as low-pressure vapor at or slightly above room temperature. The vapor is then compressed and exits the compressor as high-pressure superheated vapor. The superheated vapor travels under pressure through coils or tubes comprising "the condenser", which are passively cooled by exposure to air in the room. (In hot weather, the room or "ambient" air may itself have been cooled by an air conditioner. A cooler ambient temperature demands less work from the refrigerator.) The condenser cools the vapor, and it eventually liquefies. It is then still under pressure. By the time the refrigerant leaves the condenser it is only slightly above room temperature. This warm liquid refrigerant is forced by its pressure through a metering or throttling device, also known as an expansion valve (essentially a constriction) to an area of much lower pressure. The sudden decrease in pressure results in explosive-like flash evaporation of a portion (typically about half) of the liquid. The latent heat absorbed by this flash evaporation is drawn mostly from adjacent still-liquid refrigerant, a phenomenon known as "auto-refrigeration". The cold and partially vaporized refrigerant continues through coils or tubes of the evaporator unit. A fan blows air from the refrigerator or freezer compartment ("box air") across these coils or tubes and the refrigerant completely vaporizes, drawing further latent heat from the box air, and so keeps the box air cold. This cooled air is returned to the refrigerator or freezer compartment. The cool air in the refrigerator or freezer is still warmer than the refrigerant in the evaporator. Refrigerant leaves the evaporator, now fully vaporized and slightly heated, and returns to the compressor inlet to continue the cycle.
An absorption refrigerator works differently from a compressor refrigerator, using a source of heat, such as combustion of liquefied petroleum gas, solar thermal energy or an electric heating element. These heat sources are much quieter than the compressor motor in a typical refrigerator. A fan or pump might be the only mechanical moving parts; reliance on convection is considered impractical.
The Peltier effect uses electricity to pump heat directly; this type of refrigerator is sometimes used for camping, or where noise is not acceptable. They can be totally silent (if they don't include a fan for air circulation) but are less energy-efficient than other methods.
Other uses of an absorption refrigerator (or "chiller") include large systems used in office buildings or complexes such as hospitals and universities. These large systems are used to chill a brine solution that is circulated through the building.
Other alternatives to the vapor-compression cycle but not in current use include thermionic, vortex tube, air cycle, magnetic cooling, Stirling cycle, Malone refrigeration, acoustic cooling, pulse tube and water cycle systems.[6]
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment